Oscillatory traveling wave solutions to an attractive chemotaxis system
نویسندگان
چکیده
منابع مشابه
Traveling-Wave Chemotaxis.
A simple model is studied for the chemotactic movement of biological cells in the presence of a periodic chemical wave. It incorporates the feature of adaptation that may play an important role in allowing for “rectified” chemotaxis: motion opposite the direction of wave propagation. The conditions under which such rectification occurs are elucidated in terms of the form and speed of the chemic...
متن کاملSome traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کاملsome traveling wave solutions of soliton family
solitons are ubiquitous and exist in almost every area from sky to bottom. for solitons to appear, the relevant equation of motion must be nonlinear. in the present study, we deal with the korteweg-devries (kdv), modied korteweg-de vries (mkdv) and regularised longwave (rlw) equations using homotopy perturbation method (hpm). the algorithm makes use of the hpm to determine the initial expansio...
متن کاملExact Traveling-Wave Solutions to Bidirectional Wave Equations
where a, b, c, and d are real constants. These systems, derived by Bona, Saut and Toland for describing small-amplitude long waves in a water channel, are formally equivalent to the classical Boussinesq system and correct through first order with regard to a small parameter characterizing the typical amplitude-todepth ratio. Exact solutions for a large class of systems are presented. The existe...
متن کاملExact traveling wave solutions for system of nonlinear evolution equations
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2016
ISSN: 0022-0396
DOI: 10.1016/j.jde.2016.09.012